博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
C++11并发——多线程lock_gurad ,unique_lock (三)
阅读量:4315 次
发布时间:2019-06-06

本文共 15800 字,大约阅读时间需要 52 分钟。

struct
defer_lock_t {};
该类型的常量对象 defer_lockdefer_lock 是一个常量对象

std::lock_guard 介绍

std::lock_gurad 是 C++11 中定义的模板类。定义如下:

template 
class lock_guard;

lock_guard 对象通常用于管理某个锁(Lock)对象,因此与 Mutex RAII 相关,方便线程对互斥量上锁,即在某个 lock_guard 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;

而 lock_guard 的生命周期结束之后,它所管理的锁对象会被解锁(注:类似 shared_ptr 等智能指针管理动态分配的内存资源 )。

 

模板参数 Mutex 代表互斥量类型,例如 std::mutex 类型,它应该是一个基本的 BasicLockable 类型,标准库中定义几种基本的 BasicLockable 类型,

分别 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex (以上四种类型均已在上一篇博客中介绍)以及 std::unique_lock(本文后续会介绍 std::unique_lock)。

(注:BasicLockable 类型的对象只需满足两种操作,lock 和 unlock,另外还有 Lockable 类型,在 BasicLockable 类型的基础上新增了 try_lock 操作,

因此一个满足 Lockable 的对象应支持三种操作:lock,unlock 和 try_lock;最后还有一种 TimedLockable 对象,在 Lockable 类型的基础上又新增了 try_lock_for 和 try_lock_until 两种操作,

因此一个满足 TimedLockable 的对象应支持五种操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。

lock_guard 对象构造时,传入的 Mutex 对象(即它所管理的 Mutex 对象)会被当前线程锁住。在lock_guard 对象被析构时,它所管理的 Mutex 对象会自动解锁

由于不需要程序员手动调用 lock 和 unlock 对 Mutex 进行上锁和解锁操作,因此这也是最简单安全的上锁和解锁方式,尤其是在程序抛出异常后先前已被上锁的 Mutex 对象可以正确进行解锁操作,

极大地简化了程序员编写与 Mutex 相关的异常处理代码。

值得注意的是,lock_guard 对象并不负责管理 Mutex 对象的生命周期,lock_guard 对象只是简化了 Mutex 对象的上锁和解锁操作,方便线程对互斥量上锁,

即在某个 lock_guard 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 lock_guard 的生命周期结束之后,它所管理的锁对象会被解锁。

std::lock_guard 构造函数

lock_guard 构造函数如下表所示:

locking (1)
explicit lock_guard (mutex_type& m);
adopting (2)
lock_guard (mutex_type& m, adopt_lock_t tag);
copy [deleted](3)
lock_guard (const lock_guard&) = delete;
  1. locking 初始化
    • lock_guard 对象管理 Mutex 对象 m,并在构造时对 m 进行上锁(调用 m.lock())。
  2. adopting初始化
    • lock_guard 对象管理 Mutex 对象 m,与 locking 初始化(1) 不同的是, Mutex 对象 m 已被当前线程锁住。
  3. 拷贝构造
    • lock_guard 对象的拷贝构造和移动构造(move construction)均被禁用,因此 lock_guard 对象不可被拷贝构造或移动构造。

我们来看一个简单的例子

#include 
#include
// std::thread#include
// std::mutex, std::lock_guard#include
// std::logic_error#include
#include
std::mutex mtx;void print_thread_id (int id) { mtx.lock(); std::lock_guard
lck(mtx, std::adopt_lock); std::cout << "thread #" << id << '\n';}int main(int argc, char *argv[]){ QCoreApplication a(argc, argv); std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return a.exec();}

Possible output (order of lines may vary, but they are never intermingled):

thread #1thread #2thread #3thread #4thread #5thread #6thread #7thread #8thread #9thread #10

在 print_thread_id 中,我们首先对 mtx 进行上锁操作(mtx.lock();),然后用 mtx 对象构造一个 lock_guard 对象(std::lock_guard<std::mutex> lck(mtx, std::adopt_lock);),

注意此时 Tag 参数为 std::adopt_lock,表明当前线程已经获得了锁,此后 mtx 对象的解锁操作交由 lock_guard 对象 lck 来管理,在 lck 的生命周期结束之后,mtx 对象会自动解锁。

 

lock_guard 最大的特点就是安全易于使用,请看下面例子,在异常抛出的时候通过 lock_guard 对象管理的 Mutex 可以得到正确地解锁。

#include 
// std::cout#include
// std::thread#include
// std::mutex, std::lock_guard#include
// std::logic_errorstd::mutex mtx;void print_even (int x) { if (x%2==0) std::cout << x << " is even\n"; else throw (std::logic_error("not even"));}void print_thread_id (int id) { try { // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception: std::lock_guard
lck (mtx); print_even(id); } catch (std::logic_error&) { std::cout << "[exception caught]\n"; }}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}
View Code

std::unique_lock 介绍

但是 lock_guard 最大的缺点也是简单,没有给程序员提供足够的灵活度,因此,C++11 标准中定义了另外一个与 Mutex RAII 相关类 unique_lock,该类与 lock_guard 类相似,

也很方便线程对互斥量上锁,但它提供了更好的上锁和解锁控制。

顾名思义,unique_lock 对象以独占所有权的方式( unique owership)管理 mutex 对象的上锁和解锁操作,所谓独占所有权,就是没有其他的 unique_lock 对象同时拥有某个 mutex 对象的所有权。

在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。

std::unique_lock 对象也能保证在其自身析构时它所管理的 Mutex 对象能够被正确地解锁(即使没有显式地调用 unlock 函数)。

因此,和 lock_guard 一样,这也是一种简单而又安全的上锁和解锁方式,尤其是在程序抛出异常后先前已被上锁的 Mutex 对象可以正确进行解锁操作,极大地简化了程序员编写与 Mutex 相关的异常处理代码。

值得注意的是,unique_lock 对象同样也不负责管理 Mutex 对象的生命周期,unique_lock 对象只是简化了 Mutex 对象的上锁和解锁操作,方便线程对互斥量上锁,即在某个 unique_lock 对象的声明周期内,

它所管理的锁对象会一直保持上锁状态;而 unique_lock 的生命周期结束之后,它所管理的锁对象会被解锁,这一点和 lock_guard 类似,但 unique_lock 给程序员提供了更多的自由

std::unique_lock 构造函数

std::unique_lock 的构造函数的数目相对来说比 std::lock_guard 多,其中一方面也是因为 std::unique_lock 更加灵活,从而在构造 std::unique_lock 对象时可以接受额外的参数。总地来说,std::unique_lock 构造函数如下:

default (1)
unique_lock() noexcept;
locking (2)
explicit unique_lock(mutex_type& m);
try-locking (3)
unique_lock(mutex_type& m, try_to_lock_t tag);
deferred (4)
unique_lock(mutex_type& m, defer_lock_t tag) noexcept;
adopting (5)
unique_lock(mutex_type& m, adopt_lock_t tag);
locking for (6)
template 
unique_lock(mutex_type& m, const chrono::duration
& rel_time);
locking until (7)
template 
unique_lock(mutex_type& m, const chrono::time_point
& abs_time);
copy [deleted] (8)
unique_lock(const unique_lock&) = delete;
move (9)
unique_lock(unique_lock&& x);

下面我们来分别介绍以上各个构造函数:

(1) 默认构造函数
新创建的 unique_lock 对象不管理任何 Mutex 对象。
(2) locking 初始化
新创建的 unique_lock 对象管理 Mutex 对象 m,并尝试调用 m.lock() 对 Mutex 对象进行上锁,如果此时另外某个 unique_lock 对象已经管理了该 Mutex 对象 m,则当前线程将会被阻塞。
(3) try-locking 初始化
新创建的 unique_lock 对象管理 Mutex 对象 m,并尝试调用 m.try_lock() 对 Mutex 对象进行上锁,但如果上锁不成功,并不会阻塞当前线程
(4) deferred 初始化
新创建的 unique_lock 对象管理 Mutex 对象 m,但是在初始化的时候并不锁住 Mutex 对象。 m 应该是一个没有当前线程锁住的 Mutex 对象
(5) adopting 初始化
新创建的 unique_lock 对象管理 Mutex 对象 m,
m 应该是一个已经被当前线程锁住的 Mutex 对象。(并且当前新创建的 unique_lock 对象拥有对锁(Lock)的所有权)。
(6) locking 一段时间(duration)
新创建的 unique_lock 对象管理 Mutex 对象 m,并试图通过调用 m.try_lock_for(rel_time) 来锁住 Mutex 对象一段时间(rel_time)。
(7) locking 直到某个时间点(time point)
新创建的 unique_lock 对象管理 Mutex 对象m,并试图通过调用 m.try_lock_until(abs_time) 来在某个时间点(abs_time)之前锁住 Mutex 对象。
(8) 拷贝构造 [被禁用]
unique_lock对象不能被拷贝构造。
(9) 移动(move)构造
新创建的 unique_lock 对象获得了由 x 所管理的 Mutex 对象的所有权(包括当前 Mutex 的状态)。调用 move 构造之后,
x 对象如同通过默认构造函数所创建的,就不再管理任何 Mutex 对象了。

综上所述,由 (2) 和 (5) 创建的 unique_lock 对象通常拥有 Mutex 对象的锁。而通过 (1) 和 (4) 创建的则不会拥有锁。通过 (3),(6) 和 (7) 创建的 unique_lock 对象,则在 lock 成功时获得锁。

 

#include 
// std::cout#include
// std::thread#include
// std::mutex, std::lock, std::unique_lock // std::adopt_lock, std::defer_lockstd::mutex foo,bar;void task_a () { std::lock (foo,bar); // simultaneous lock (prevents deadlock) std::unique_lock
lck1 (foo,std::adopt_lock); std::unique_lock
lck2 (bar,std::adopt_lock); std::cout << "task a\n"; // (unlocked automatically on destruction of lck1 and lck2)}void task_b () { // foo.lock(); bar.lock(); // replaced by: std::unique_lock
lck1, lck2; lck1 = std::unique_lock
(bar,std::defer_lock); lck2 = std::unique_lock
(foo,std::defer_lock); std::lock (lck1,lck2); // simultaneous lock (prevents deadlock) std::cout << "task b\n"; // (unlocked automatically on destruction of lck1 and lck2)}int main (){ std::thread th1 (task_a); std::thread th2 (task_b); th1.join(); th2.join(); return 0;}

std::unique_lock 移动(move assign)赋值操作

std::unique_lock 支持移动赋值(move assignment),但是普通的赋值被禁用了,

move (1)
unique_lock& operator= (unique_lock&& x) noexcept;
copy [deleted] (2)
unique_lock& operator= (const unique_lock&) = delete;

移动赋值(move assignment)之后,由 x 所管理的 Mutex 对象及其状态将会被新的 std::unique_lock 对象取代。

如果被赋值的对象之前已经获得了它所管理的 Mutex 对象的锁,则在移动赋值(move assignment)之前会调用 unlock 函数释放它所占有的锁。
调用移动赋值(move assignment)之后, x 对象如同通过默认构造函数所创建的,也就不再管理任何 Mutex 对象了。

#include 
// std::cout#include
// std::thread#include
// std::mutex, std::unique_lockstd::mutex mtx; // mutex for critical sectionvoid print_fifty (char c) { std::unique_lock
lck; // default-constructed lck = std::unique_lock
(mtx); // move-assigned for (int i=0; i<50; ++i) { std::cout << c; } std::cout << '\n';}int main (){ std::thread th1 (print_fifty,'*'); std::thread th2 (print_fifty,'$'); th1.join(); th2.join(); return 0;}

 Possible output (order of lines may vary, but characters are never mixed):

**************************************************$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

std::unique_lock 主要成员函数

本节我们来看看 std::unique_lock 的主要成员函数。由于 std::unique_lock 比 std::lock_guard 操作灵活,因此它提供了更多成员函数。具体分类如下:

  1. 上锁/解锁操作:lock,try_lock,try_lock_for,try_lock_until unlock
  2. 修改操作:移动赋值(move assignment)(前面已经介绍过了),交换(swap)(与另一个 std::unique_lock 对象交换它们所管理的 Mutex 对象的所有权),释放(release)(返回指向它所管理的 Mutex 对象的指针,并释放所有权)
  3. 获取属性操作:owns_lock(返回当前 std::unique_lock 对象是否获得了锁)、operator bool()(与 owns_lock 功能相同,返回当前 std::unique_lock 对象是否获得了锁)、mutex(返回当前 std::unique_lock 对象所管理的 Mutex 对象的指针)。

std::unique_lock::lock请看下面例子

上锁操作,调用它所管理的 Mutex 对象的 lock 函数。如果在调用  Mutex 对象的 lock 函数时该 Mutex 对象已被另一线程锁住,则当前线程会被阻塞,直到它获得了锁。

该函数返回时,当前的 unique_lock 对象便拥有了它所管理的 Mutex 对象的锁。如果上锁操作失败,则抛出 system_error 异常。

// unique_lock::lock/unlock#include 
// std::cout#include
// std::thread#include
// std::mutex, std::unique_lock, std::defer_lockstd::mutex mtx; // mutex for critical sectionvoid print_thread_id (int id) { std::unique_lock
lck (mtx,std::defer_lock); // critical section (exclusive access to std::cout signaled by locking lck): lck.lock(); std::cout << "thread #" << id << '\n'; lck.unlock();}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}

 

std::unique_lock::try_lock

上锁操作,调用它所管理的 Mutex 对象的 try_lock 函数,如果上锁成功,则返回 true,否则返回 false。

#include 
// std::cout#include
// std::vector#include
// std::thread#include
// std::mutex, std::unique_lock, std::defer_lockstd::mutex mtx; // mutex for critical sectionvoid print_star () { std::unique_lock
lck(mtx,std::defer_lock); // print '*' if successfully locked, 'x' otherwise: if (lck.try_lock()) std::cout << '*'; else std::cout << 'x';}int main (){ std::vector
threads; for (int i=0; i<500; ++i) threads.emplace_back(print_star); for (auto& x: threads) x.join(); return 0;}

Possible output (the amount of 'x' -if any- may vary):

*****************************x******************************x*x***x***x*x*x**x**x**********x********************************************************************************x*x*x*x********************************************************************x********x**********x*******************************************************************************************x*x*x*x**x*x*x*x*x*x***********************x********************************************************************************************x****

 

std::unique_lock::try_lock_for

上锁操作,调用它所管理的 Mutex 对象的 try_lock_for 函数,如果上锁成功,则返回 true,否则返回 false。

#include 
// std::cout#include
// std::chrono::milliseconds#include
// std::thread#include
// std::timed_mutex, std::unique_lock, std::defer_lockstd::timed_mutex mtx;void fireworks () { std::unique_lock
lck(mtx,std::defer_lock); // waiting to get a lock: each thread prints "-" every 200ms: while (!lck.try_lock_for(std::chrono::milliseconds(200))) { std::cout << "-"; } // got a lock! - wait for 1s, then this thread prints "*" std::this_thread::sleep_for(std::chrono::milliseconds(1000)); std::cout << "*\n";}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(fireworks); for (auto& th : threads) th.join(); return 0;}

Possible output (after around 10s, length of lines may vary slightly):

------------------------------------*----------------------------------------*-----------------------------------*------------------------------*-------------------------*--------------------*---------------*----------*-----**

 

std::unique_lock::unlock

解锁操作,调用它所管理的 Mutex 对象的 unlock 函数。

#include 
// std::cout#include
// std::thread#include
// std::mutex, std::unique_lock, std::defer_lockstd::mutex mtx; // mutex for critical sectionvoid print_thread_id (int id) { std::unique_lock
lck (mtx,std::defer_lock); // critical section (exclusive access to std::cout signaled by locking lck): lck.lock(); std::cout << "thread #" << id << '\n'; lck.unlock();}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0;}

 

std::unique_lock::release

返回指向它所管理的 Mutex 对象的指针,并释放所有权。

#include 
// std::cout#include
// std::vector#include
// std::thread#include
// std::mutex, std::unique_lockstd::mutex mtx;int count = 0;void print_count_and_unlock (std::mutex* p_mtx) { std::cout << "count: " << count << '\n'; p_mtx->unlock();}void task() { std::unique_lock
lck(mtx); ++count; print_count_and_unlock(lck.release());}int main (){ std::vector
threads; for (int i=0; i<10; ++i) threads.emplace_back(task); for (auto& x: threads) x.join(); return 0;}

std::unique_lock::owns_lock

返回当前 std::unique_lock 对象是否获得了锁。

请看下面例子(参考):

#include 
// std::cout#include
// std::vector#include
// std::thread#include
// std::mutex, std::unique_lock, std::try_to_lockstd::mutex mtx; // mutex for critical sectionvoid print_star () { std::unique_lock
lck(mtx,std::try_to_lock); // print '*' if successfully locked, 'x' otherwise: if (lck.owns_lock()) std::cout << '*'; else std::cout << 'x';}int main (){ std::vector
threads; for (int i=0; i<500; ++i) threads.emplace_back(print_star); for (auto& x: threads) x.join(); return 0;}

 

std::unique_lock::operator bool()

与 owns_lock 功能相同,返回当前 std::unique_lock 对象是否获得了锁。

std::unique_lock::mutex

返回当前 std::unique_lock 对象所管理的 Mutex 对象的指针。

 

#include 
// std::cout#include
// std::thread#include
// std::mutex, std::unique_lock, std::defer_lockclass MyMutex : public std::mutex { int _id;public: MyMutex (int id) : _id(id) {} int id() {
return _id;}};MyMutex mtx (101);void print_ids (int id) { std::unique_lock
lck (mtx); std::cout << "thread #" << id << " locked mutex " << lck.mutex()->id() << '\n';}int main (){ std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_ids,i+1); for (auto& th : threads) th.join(); return 0;}

 

 

 

转载于:https://www.cnblogs.com/xiangtingshen/p/10538785.html

你可能感兴趣的文章
sk_buff Structure
查看>>
oracle的级联更新、删除
查看>>
多浏览器开发需要注意的问题之一
查看>>
Maven配置
查看>>
HttpServletRequest /HttpServletResponse
查看>>
SAM4E单片机之旅——24、使用DSP库求向量数量积
查看>>
从远程库克隆库
查看>>
codeforces Unusual Product
查看>>
hdu4348 - To the moon 可持久化线段树 区间修改 离线处理
查看>>
springMVC中一个class中的多个方法
查看>>
Linux系统安装出错后出现grub rescue的修复方法
查看>>
线段树模板整理
查看>>
[教程][6月4日更新]VMware 8.02虚拟机安装MAC lion 10.7.3教程 附送原版提取镜像InstallESD.iso!...
查看>>
[iOS问题归总]iPhone上传项目遇到的问题
查看>>
Python天天美味(总) --转
查看>>
Spring Framework tutorial
查看>>
【VS开发】win7下让程序默认以管理员身份运行
查看>>
【机器学习】Learning to Rank 简介
查看>>
Unity 使用实体类
查看>>
【转】通过文件锁实现,程序开始运行时,先判断文件是否存在,若存在则表明该程序已经在运行了,如果不存在就用open函数创建该文件,程序退出时关闭文件并删除文件...
查看>>